II型超导体的磁场(H) - 温度(t)相位二克由混合状态支配,只要固定涡旋[1],该状态就可以保留零耗散。在二维(2D)限制中,情况可能会大不相同,因为促进的热和量子波动破坏了导管的顺序并引起耗散。值得注意的是,在许多薄膜超导体中,在垂直磁场中观察到的有限电阻比正常状态值低得多,该磁场一直持续到零温度的极限[2-4]。这种异常金属状态(AMS)的存在与本地化缩放理论所提出的不存在2D金属性的主张相矛盾[5]。在过去的几十年中的研究导致了这样的观点,即该状态可以被视为失败的超导体[6],但其起源仍然无法解决[7-17]。高度结晶的2D超导体非常适合研究AMS,因为它们具有出色的清洁剂[18]。通常可以看到磁场诱导的超导金属转变[19-24],而低场耗散状态势必是金属的。但是,受分钟数量的限制,Crys-Talline 2D超导体中AMS的实验探针尚未超过DC传输,并且尚未进行新技术。这些结果指向玻色症Versatile probes are available for films with much larger size, revealing a particle-hole symmetry arising from uncondensed Cooper pairs based on vanishing Hall response [ 25 – 28 ], absence of cyclotron resonance mea- sured by microwave spectroscopy [ 29 ], and charge-2 e ( e is the elementary charge) quantum oscillation in nano- patterned films [ 26 , 28 ].
主要关键词